Exercise Set 7.6

Practice Exercises

In Exercises 1-4, u and v have the same direction. In each exercise: **a.** Find $\|\mathbf{u}\|$. **b.** Find $\|\mathbf{v}\|$. **c.** Is $\mathbf{u} = \mathbf{v}$? Explain.

In Exercises 5-12, sketch each vector as a position vector and find its magnitude.

$$5. v = 3i + j$$

6.
$$v = 2i + 3j$$

7.
$$\mathbf{v} = \mathbf{i} - \mathbf{j}$$

8.
$$v = -i - j$$

$$9. v = -6i - 2j$$

10.
$$v = 5i - 2j$$

11.
$$v = -4i$$

12.
$$v = -5i$$

In Exercises 13–20, let \mathbf{v} be the vector from initial point P_1 to terminal point P_2 . Write v in terms of i and j.

13.
$$P_1 = (-4, -4), P_2 = (6, 2)$$

14.
$$P_1 = (2, -5), P_2 = (-6, 6)$$

15.
$$P_1 = (-8, 6), P_2 = (-2, 3)$$

16.
$$P_1 = (-7, -4), P_2 = (0, -2)$$

17.
$$P_1 = (-1, 7), P_2 = (-7, -7)$$

18.
$$P_1 = (-1, 6), P_2 = (7, -5)$$

19.
$$P_1 = (-3, 4), P_2 = (6, 4)$$

20.
$$P_1 = (4, -5), P_2 = (4, 3)$$

In Exercises 21-38, let

$$\mathbf{u} = 2\mathbf{i} - 5\mathbf{j}, \mathbf{v} = -3\mathbf{i} + 7\mathbf{j}, \text{ and } \mathbf{w} = -\mathbf{i} - 6\mathbf{j}.$$

Find each specified vector or scalar.

21.
$$u + v$$

22.
$$v + w$$

31.
$$3w + 2v$$

32.
$$3u + 4v$$

33.
$$3v - 4w$$

34.
$$4w - 3v$$

In Exercises 39-46, find the unit vector that has the same direction as the vector v.

39.
$$v = 6i$$

40.
$$v = -5i$$

41.
$$v = 3i - 4j$$

42.
$$v = 8i - 6j$$

43.
$$v = 3i - 2j$$

42.
$$\mathbf{v} = 6\mathbf{i} - 6\mathbf{j}$$

44. $\mathbf{v} = 4\mathbf{i} - 2\mathbf{j}$

45.
$$v = i + j$$

46.
$$v = i - j$$

In Exercises 47-52, write the vector v in terms of i and j whose magnitude $\|\mathbf{v}\|$ and direction angle θ are given.

47.
$$\|\mathbf{v}\| = 6, \theta = 30^{\circ}$$

48.
$$\|\mathbf{v}\| = 8, \theta = 45^{\circ}$$

49.
$$\|\mathbf{v}\| = 12, \theta = 225^{\circ}$$

50.
$$\|\mathbf{v}\| = 10, \theta = 330^{\circ}$$

51.
$$\|\mathbf{v}\| = \frac{1}{2}, \theta = 113^{\circ}$$

52.
$$\|\mathbf{v}\| = \frac{1}{4}, \theta = 200^{\circ}$$

Practice Plus

In Exercises 53-56, let

$$u = -2i + 3j$$
, $v = 6i - j$, $w = -3i$.

Find each specified vector or scalar.

53.
$$4u - (2v - w)$$

54.
$$3u - (4v - w)$$

55.
$$\|\mathbf{n} + \mathbf{v}\|^2 - \|\mathbf{n} - \mathbf{v}\|^2$$

55.
$$\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2$$
 56. $\|\mathbf{v} + \mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$