

91. a. i; -1 + i; -i; -1 + i; -i; -1 + i b. Complex numbers may vary. 92. a. -i; -1 - i; i; -1 - i; i; -1 - i b. Complex numbers may vary. 106. makes sense 107. does not make sense 108. makes sense 109. does not make sense 111. y_4 113. Yes, both have length $3\sqrt{5}$. 114. Yes, both have slope 2. 115. 8x + 34y

Section 7.6

Check Point Exercises

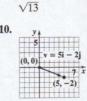
1. $\|\mathbf{u}\| = 5 = \|\mathbf{v}\|$ and $m_u = \frac{4}{3} = m_v$

$$\|\mathbf{v}\| = 3\sqrt{2}$$
 3. $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$ 4. a. $11\mathbf{i} - 2\mathbf{j}$ b. $3\mathbf{i} + 8\mathbf{j}$

5. a. $56\mathbf{i} + 80\mathbf{j}$ **b.** $-35\mathbf{i} - 50\mathbf{j}$ **6.** $30\mathbf{i} + 33\mathbf{j}$ **7.** $\frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}$; $\sqrt{\left(\frac{4}{5}\right)^2 + \left(-\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25} + \frac{9}{25}} = \sqrt{\frac{25}{25}} = 1$ **8.** $30\sqrt{2}\mathbf{i} + 30\sqrt{2}\mathbf{j}$

Exercise Set 7.6

1. a. $\sqrt{41}$ b. $\sqrt{41}$ c. $\mathbf{u} = \mathbf{v}$ 2. a. $2\sqrt{13}$ b. $2\sqrt{13}$ c. $\mathbf{u} = \mathbf{v}$ 3. a. 6 b. 6 c. $\mathbf{u} = \mathbf{v}$ 4. a. 5 b. 5 c. $\mathbf{u} = \mathbf{v}$


 $\sqrt{10}$

 $\sqrt{2}$

 $\sqrt{2}$

113. The plane's true speed relative to the ground is about 269 miles per hour.; The compass heading relative to the ground is 278.3°.

114.
$$\approx 4232.1$$
; $\approx 72.7^{\circ}$
115. a. 76°
b. increase
116. 137.7°
117. $\frac{7}{5}\mathbf{i} - \frac{21}{5}\mathbf{j}$
118. a. $\|\mathbf{u}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\|\mathbf{v}\|\|\mathbf{w}\|\cos\theta$

b.
$$\|\mathbf{u}\| = \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2}$$
; $\|\mathbf{u}\|^2 = (a_1 - a_2)^2 + (b_1 - b_2)^2$; $\|\mathbf{v}\| = \sqrt{a_1^2 + b_1^2}$; $\|\mathbf{v}\|^2 = a_1^2 + b_1^2$; $\|\mathbf{w}\| = \sqrt{a_2^2 + b_2^2}$; $\|\mathbf{w}\|^2 = a_2^2 + b_2^2$