## Exercise Set 1.4

#### **Practice Exercises**

In Exercises 1-8, add or subtract as indicated and write the result in standard form.

$$(7+2i)+(1-4i)$$
 2.  $(-2+6i)+(4-i)$ 

2. 
$$(-2+6i)+(4-i)$$

3. 
$$(3+2i)-(5-7i)$$

3. 
$$(3+2i)-(5-7i)$$
 4.  $(-7+5i)-(-9-11i)$ 

$$(5.6 - (-5 + 4i) - (-13 - i))$$

6. 
$$7 - (-9 + 2i) - (-17 - i)$$

7. 
$$8i - (14 - 9i)$$

8. 
$$15i - (12 - 11i)$$

In Exercises 9-20, find each product and write the result in standard form.

$$(9. +3i(7i - 5)$$

10. 
$$-8i(2i-7)$$

11. 
$$(-5+4i)(3+i)$$

12. 
$$(-4 - 8i)(3 + i)$$

$$(13. (7-5i)(-2-3i)$$

**14.** 
$$(8-4i)(-3+9i)$$

15. 
$$(3+5i)(3-5i)$$

16. 
$$(2 + 7i)(2 - 7i)$$

$$(17. (-5 + i)(-5 - i))$$

**18.** 
$$(-7-i)(-7+i)$$

19. 
$$(2 + 3i)^2$$

**20.** 
$$(5-2i)^2$$

In Exercises 21–28, divide and express the result in standard form.

22. 
$$\frac{3}{4+i}$$

23. 
$$\frac{2i}{1+1}$$

**24.** 
$$\frac{5i}{2-i}$$

**26.** 
$$\frac{-6i}{3+2i}$$

27. 
$$\frac{2+3i}{2+i}$$

28. 
$$\frac{3-4i}{4+3i}$$

In Exercises 29-44, perform the indicated operations and write the result in standard form.

29. 
$$\sqrt{-64} - \sqrt{-25}$$

30. 
$$\sqrt{-81} - \sqrt{-144}$$

31. 
$$5\sqrt{-16} + 3\sqrt{-81}$$

32. 
$$5\sqrt{-8} + 3\sqrt{-18}$$

33. 
$$(-2 + \sqrt{-4})^2$$

34. 
$$(-5 - \sqrt{-9})^2$$

35. 
$$(-3 - \sqrt{-7})^2$$

36. 
$$\left(-2 + \sqrt{-11}\right)$$

$$\begin{array}{c} -8 + \sqrt{-32} \\ \hline 24 \end{array}$$

36. 
$$\left(-2 + \sqrt{-11}\right)^2$$
38.  $\frac{-12 + \sqrt{-28}}{32}$ 

39. 
$$\frac{-6 - \sqrt{-12}}{48}$$
41.  $\sqrt{-8}(\sqrt{-3} - \sqrt{5})$ 

**40.** 
$$\frac{-15 - \sqrt{-18}}{33}$$

$$(41.)\sqrt{-8}(\sqrt{-3}-\sqrt{5})$$

**42.** 
$$\sqrt{-12}(\sqrt{-4} - \sqrt{2})$$

43. 
$$(3\sqrt{-5})(-4\sqrt{-12})$$

**44.** 
$$(3\sqrt{-7})(2\sqrt{-8})$$

# **Practice Plus**

In Exercises 45-50, perform the indicated operation(s) and write the result in standard form.

45. 
$$(2-3i)(1-i)-(3-i)(3+i)$$

46. 
$$(8+9i)(2-i)-(1-i)(1+i)$$

47. 
$$(2+i)^2 - (3-i)^2$$

48. 
$$(4-i)^2 - (1+2i)^2$$

**49.** 
$$5\sqrt{-16} + 3\sqrt{-81}$$

**50.** 
$$5\sqrt{-8} + 3\sqrt{-18}$$

**51.** Evaluate 
$$x^2 - 2x + 2$$
 for  $x = 1 + i$ .

**52.** Evaluate 
$$x^2 - 2x + 5$$
 for  $x = 1 - 2i$ .

53. Evaluate 
$$\frac{x^2 + 19}{2 - x}$$
 for  $x = 3i$ .

**54.** Evaluate 
$$\frac{x^2 + 11}{3 - x}$$
 for  $x = 4i$ .

### **Application Exercises**

Complex numbers are used in electronics to describe the current in an electric circuit. Ohm's law relates the current in a circuit, I, in amperes, the voltage of the circuit, E, in volts, and the resistance of the circuit, R, in ohms, by the formula E = IR. Use this formula to solve Exercises 55-56.

- **55.** Find E, the voltage of a circuit, if I = (4 5i) amperes and R = (3 + 7i) ohms.
- **56.** Find E, the voltage of a circuit, if I = (2 3i) amperes and R = (3 + 5i) ohms.
- 57. The mathematician Girolamo Cardano is credited with the first use (in 1545) of negative square roots in solving the now-famous problem, "Find two numbers whose sum is 10 and whose product is 40." Show that the complex numbers  $5 + i\sqrt{15}$  and  $5 - i\sqrt{15}$  satisfy the conditions of the problem. (Cardano did not use the symbolism  $i\sqrt{15}$  or even  $\sqrt{-15}$ . He wrote R.m 15 for  $\sqrt{-15}$ , meaning "radix minus" 15." He regarded the numbers 5 + R.m 15 and 5 - R.m 15 as "fictitious" or "ghost numbers," and considered the problem "manifestly impossible." But in a mathematically adventurous spirit, he exclaimed, "Nevertheless, we will operate.")

### **Writing in Mathematics**

- **58.** What is *i*?
- 59. Explain how to add complex numbers. Provide an example with your explanation.
- 60. Explain how to multiply complex numbers and give an example.
- **61.** What is the complex conjugate of 2 + 3i? What happens when you multiply this complex number by its complex conjugate?
- 62. Explain how to divide complex numbers. Provide an example with your explanation.
- 63. Explain each of the three jokes in the cartoon on page 130.
- 64. A stand-up comedian uses algebra in some jokes, including one about a telephone recording that announces "You have just reached an imaginary number. Please multiply by i and dial again." Explain the joke.

Explain the error in Exercises 65-66.

**65.** 
$$\sqrt{-9} + \sqrt{-16} = \sqrt{-25} = i\sqrt{25} = 5i$$

**66.** 
$$(\sqrt{-9})^2 = \sqrt{-9} \cdot \sqrt{-9} = \sqrt{81} = 9$$