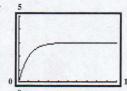
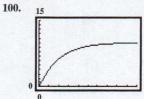
- **53.** 22 **54.** 19 **55.** 847 **56.** 975 **57.** f(x) = -4x + 5 **58.** g(x) = 5x 2 **59.** $a_n = 3n 2$ **60.** $a_n = 2n + 1$ **61.** a. $a_n = 0.77n + 9.23$ b. 30.0% **62.** a. $a_n = 0.83n + 16.77$ b. 59.1% **63.** Company A will pay \$1400 more in year 10.

- 64. Company A will pay \$600 more in year 10.
 65. a. \$21,153
 b. \$21,158; overestimates by \$5
 66. a. \$83,245
 69. Company A: \$307,000; Company B: \$324,000; Company B pays the greater total amount.
- 71. 2869 seats 78. does not make sense 79. makes sense 80. makes sense 81. makes sense 82. the 200th term
- 83. 320 degree-days 84. $S_n = \frac{n}{2}(1 + 2n 1) = \frac{n}{2}(2n) = n^2$ 85. -2; -2; -2; The ratio of a term to the term that directly precedes it is always -2. 86. 5; 5; 5; 5; The ratio of a term to the term that directly precedes it is always 5. 87. 8019


Section 11.3


Check Point Exercises

1. 12, 6, 3, $\frac{3}{2}$, $\frac{3}{4}$, $\frac{3}{8}$ **2.** 3645 **3.** $a_n = 3(2)^{n-1}$; $a_8 = 384$ **4.** 9842 **5.** 19,680 **6.** \$2,371,746 **7. a.** \$333,946 **b.** \$291,946 9. 1 10. \$4000

Exercise Set 11.3

- **1.** 5, 15, 45, 135, 405 **2.** 4, 12, 36, 108, 324 **3.** 20, 10, 5, $\frac{5}{2}$, $\frac{5}{4}$ **4.** 24, 8, $\frac{8}{3}$, $\frac{8}{9}$, $\frac{8}{27}$ **5.** 10, -40, 160, -640, 2560 **6.** 10, -30, 90, -270, 810
- **7.** -6, 30, -150, 750, -3750 **8.** -2, 12, -72, 432, -2592 **9.** $a_8 = 768$ **10.** $a_8 = 10,935$ **11.** $a_{12} = -10,240$ **12.** $a_{12} = -8192$
- **13.** $a_{40} \approx -0.000000002$ **14.** $a_{30} \approx -0.000014901$ **15.** $a_8 = 0.1$ **16.** $a_8 = 0.004$ **17.** $a_n = 3(4)^{n-1}$; $a_7 = 12,288$
- **18.** $a_n = 3(5)^{n-1}$; $a_7 = 46,875$ **19.** $a_n = 18\left(\frac{1}{3}\right)^{n-1}$; $a_7 = \frac{2}{81}$ **20.** $a_n = 12\left(\frac{1}{2}\right)^{n-1}$; $a_7 = \frac{3}{16}$ **21.** $a_n = 1.5(-2)^{n-1}$; $a_7 = 96$
- **22.** $a_n = 5\left(-\frac{1}{5}\right)^{n-1}$; $a_7 = \frac{1}{3125}$ **23.** $a_n = 0.0004(-10)^{n-1}$; $a_7 = 400$ **24.** $a_n = 0.0007(-10)^{n-1}$; $a_7 = 700$ **25.** 531,440
- 27. 2049 28. 177,148 29. $\frac{16,383}{2}$ 30. $\frac{5461}{24}$ 31. 9840 32. 5460 33. 10,230 34. -6564 35. $\frac{63}{128}$ 36. $\frac{364}{2187}$ 37. $\frac{3}{2}$ 38. $\frac{4}{3}$ 39. 4 40. 6 41. $\frac{2}{3}$ 42. $\frac{9}{4}$ 43. $\frac{80}{13} \approx 6.15385$ 44. $\frac{120}{17} \approx 7.05882$ 45. $\frac{5}{9}$ 46. $\frac{1}{9}$ 47. $\frac{47}{99}$ 48. $\frac{83}{99}$
- **49.** $\frac{257}{999}$ **50.** $\frac{529}{999}$ **51.** arithmetic, d=1 **52.** arithmetic, d=1 **53.** geometric, r=2 **54.** geometric, $r=\frac{1}{2}$
- **56.** neither **57.** 2435 **58.** -5260 **59.** 2280 **60.** -2700 **61.** -140 **62.** 1140 **63.** $a_2 = 12, a_3 = 18$
- **64.** $a_2 = -6$, $a_3 = 18$ **65.** \$16,384 **66.** \$536,870,912 **67.** \$3,795,957 **68.** \$38,2811.45 **69. a.** approximately 1.01 for each division **70. a.** approximately 1.02 for each division **b.** $a_n = 22.12(1.02)^{n-1}$
- c. approximately 25.41 million 71. \$32,767 72. \$1,073,741,823 73. \$793,583 74. Company B; \$780 75. 130.26 in. 76. 134.07 in.
- 77. a. \$11,617 b. \$1617 78. a. \$14,163 b. \$1663 79. a. \$87,052 b. \$63,052 80. a. \$171,271 b. \$135,271
- **81.** a. \$693,031 **b.** \$293,031 **82.** a. \$956,793 **b.** \$356,793 **83.** \$30,000 **84.** \$98,888 **85.** \$9 million **86.** \$15 billion

- horizontal asymptote: y = 3; sum of series: 3 horizontal asymptote: y = 10; sum of series: 10
- 102. makes sense 103. makes sense 104. does not make sense 105. false 106. false 107. false 101. makes sense 108. true **109.** Release 2000 flies each day. **110.** \$442 **112.** 6 = 6 **113.** 15 = 15 **114.** $\frac{(k+1)(k+2)(2k+3)}{(k+1)(k+2)(2k+3)}$

Mid-Chapter 11 Check Point

- **1.** 1, $-2, \frac{3}{2}, -\frac{2}{3}, \frac{5}{24}$ **2.** 5, 2, -1, -4, -7 **3.** 5, -15, 45, -135, 405 **4.** 3, 1, 3, 1, 3 **5.** $a_n = 4n 2; a_{20} = 78$
- **6.** $a_n = 3(2)^{n-1}$; $a_{10} = 1536$ **7.** $a_n = -\frac{1}{2}n + 2$; $a_{30} = -13$ **8.** 5115 **9.** 2350 **10.** 6820 **11.** -29,300 **12.** 44
- **14.** $\frac{1995}{64}$ **15.** $\frac{5}{7}$ **16.** $\frac{5}{11}$ **17.** Answers will vary. An example is $\sum_{i=1}^{18} \frac{i}{i+2}$. **18.** 464 ft; 3600 ft **19.** \$311,249

Section 11.4

Check Point Exercises

- **1.** a. S_1 : 2 = 1(1+1); S_k : $2+4+6+\cdots+2k = k(k+1)$; S_{k+1} : $2+4+6+\cdots+2(k+1) = (k+1)(k+2)$ **b.** S_1 : $I^3 = \frac{1^2(1+1)^2}{4}$; S_k : $I^3 + 2^3 + 3^3 + \cdots + k^3 = \frac{k^2(k+1)^2}{4}$; S_{k+1} : $I^3 + 2^3 + 3^3 + \cdots + (k+1)^3 = \frac{(k+1)^2(k+2)^2}{4}$
- **2.** S_1 : 2 = 1(1+1); S_k : $2 + 4 + 6 + \cdots + 2k = k(k+1)$; S_{k+1} : $2 + 4 + 6 + \cdots + 2k + 2(k+1) = (k+1)(k+2)$; S_{k+1} can be obtained by adding 2k + 2 to both sides of S_k .