Algebra 2 - Unit 2.5

Solving Equations using "Difference of Squares" Factoring

In Unit 1 Lesson 3 we covered Differences of Squares. Here are some bits from that lesson.

Difference of Squares:

Any quantity that can be expressed as a difference of two squares can be factored using the formula... $a^2 - b^2 = (\underline{a+b})(a-b)$

Example: Factor
$$x^2 - 4$$

$$\chi^2 - \chi^2$$

$$(\chi+\chi)(\chi-\chi)$$

This was a more advanced example from that lesson.

Example: Factor out GCF, then Factor using Difference of Squares.

$$2x^{3} - 50x$$

$$2x(x^{2} - 25)$$

$$2x(x^{2} - 5^{2})$$

$$2x(x+5)(x-5)$$

$$2x(x+5)(x-5)$$

Today we will be solving equations using this method of factoring.

Steps to solve:

- 1. Get the equation equal to 0 by moving everything to one side.
- 2. Factor out the GCF (If needed)
- 3. Factor using Differences of Squares
- 4. Set Each Factor equal to 0 and solve them both.

Example: Solve the equation

Step 1:
$$\frac{2x^3}{50x} = \frac{50}{50x}$$
$$\frac{2x^3}{50x} = \frac{50}{50x}$$

Step 2:
$$G(F : 2x)$$

 $2x(X^2 - 25) = 0$

Step 3: Diff of Squares
$$2x(x+5)(x-5) = 0$$

$$\frac{2x}{2} = \frac{0}{2} \quad x + 5 = 0 \quad x - 5 = 0$$

$$X = -5 - 5 \quad x = 5$$

$$X = -5 \quad X = 5$$

Solving using Differences of Squares vs. Square Roots.

Take a look at this example. You<u>could</u> solve using a difference of squares, but you could also just solve using square roots.

$$x^2 - 4 = 0$$

Diff. of Squares

$$x^{2}-4=0$$

$$\chi^{2}-\lambda^{2}=0$$

$$(\chi+2)(\chi-2)=0$$

$$\chi+2=0 \quad \chi-2=0$$

$$\chi=-2 \quad \chi=2$$

Square Roots

You should always use the easiest method when solving. Only use the difference of squares method when you <u>can't</u> use square roots. This happens if you don't <u>only</u> have x squared.

Ex: Solve
$$2x^3 = 18x$$

 $-19x - 18x$
 $54411 \quad 3x^3 - 18x = 0$
 $54421 \quad 3x(x^2 - 9) = 0$
 $54437 \quad 3x(x+3)(x-3) = 0$
 $5444 \quad x=0 \quad x=-3 \quad x=3$

Ex: Solve
$$4x^4 - 144x^2 = 0$$

 $4x^2(x^2 - 36) = 0$
 $4x^2(x^2 - 6^2) = 0$

Homework:

U2.5 WS - "Differences of Squares"