Algebra 2 - Unit 2 Lesson 3 (2.3)

Three Step Equations

Solve three step equations of all types.

Three step equations are really no different than two step equations. Keep trying to solve by following the order of operations <u>backwards</u>.

Solve:
$$\frac{3}{2}(x+1)-2=1$$
 $+2$
 $+3$
 $+3$
 $+3$
 $+3$
 -1
 -1
 $+3$
 -1
 -1
 $+3$
 -1
 -1
 -1
 -1
 -1

Solve:
$$\frac{3}{3} \cdot \frac{3}{2} \left(\frac{x-7}{4} \right) = -\frac{6}{1} \cdot \frac{2}{3}$$
 This problem fooks a lot more complicated than it actually is. Remember to take it one step at a time.

$$\frac{3}{4} \cdot \frac{4}{3} (3 - 2x) = -\frac{4}{3} \cdot \frac{3}{4}$$

$$3 - 2x = -3$$

$$-3$$

$$-2x = -4$$

$$-3$$

$$x = 3$$

Solve:
$$2x^{2} + 5 = 11$$

$$2x^{2} = 6$$

$$2x^{2} = 6$$

$$2x^{2} = 13$$

$$2x^{2} = 13$$

$$2x^{2} = 13$$

$$2x^{2} = 13$$

Exponents are still part of the order of operations. When wanting to get rid of the exponent, do it by using roots.

PEMDAS

You try one:
$$-2 + \frac{x^3}{4} = 1$$

$$\frac{4}{4} = 3.4$$

$$\sqrt[3]{3} = \sqrt[3]{2}$$

Solve:
$$2\sqrt[3]{x} + 9 = 15$$

 $-9 - 9$
 $2\sqrt[3]{x} = 6$
 $2\sqrt[3]{x} = 3\sqrt[3]{3}$
 $x = 2\sqrt[3]{3}$

Get the radical by itself, then get rid of the radical by using powers.

$$\frac{4}{3} \cdot -3 = \frac{3}{4} \sqrt{x-1} \cdot \frac{4}{3}$$

$$(-4)^{2} = (2\sqrt{\chi-1})^{2}$$

$$+10 = \chi - 1$$

$$17 = \chi$$

Solve:
$$3\log_2(x+1) = \frac{9}{3}$$

 $\log_2(x+1) = \frac{3}{3}$
 $2^3 = x+1$

For Logarithms, get the logarithm by itself and then convert. Once you have converted, solve from there.

$$\frac{1}{5} = 1$$

$$\ln(2x) = 5$$

$$\frac{1}{2} = 2x$$

Solve:
$$2(3)^{x} + 4 = 10$$

 $-4 - 4$
 $3^{x} = 3$

For exponential functions, get the base by itself, then convert to a logarithm. Solve from there.

$$\frac{e^{x+2}}{3} = 5.3$$

$$e^{x+2} = 15$$

$$\ln |5| = x+2$$

$$-2$$

$$\ln |5| - 2 = x$$

Homework:

U2.3 Worksheet