Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

Algebra 2: Unit 1 Lesson 7 Worksheet

Converting and Evaluating Logs

Name: \qquad Hour: \qquad

Convert the following exponential equations to logarithmic equations.

Ex 1: $144=12^{2}$. This would convert to: $\log _{12} 144=2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{16}\right)$. This converts to: $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)=2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

Ex 3: $13^{\log _{4} 7}=x$. This converts to: $\log _{13} x=\log _{4} 7$. The base of the log is 13 , since it's the base of the exponential. Then the answer is always the exponent, which in this case is $\log _{4} 7$.

1. $y=3^{x}$
2. $6859=19^{3}$ \qquad
3. $12^{2}=144$ \qquad
4. $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
5. $\left(\frac{3}{7}\right)^{3}=\frac{27}{343}$ \qquad
6. $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$ \qquad
7. $\left(\frac{5}{8}\right)^{4}=\frac{625}{4096}$ \qquad
8. $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ \qquad
9. $\left(\frac{7}{12}\right)^{3}=y$ \qquad
10. $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
11. $e^{x}=y$ \qquad
12. $e^{\frac{1}{2}}=x$ \qquad
13. $61^{x}=y$ \qquad
14. $22^{43}=y$ \qquad
15. $11^{\log _{11} 5}=x$ \qquad
16. $y=9^{\log _{9} x}$ \qquad
17. $64=4^{x}$ \qquad
18. $343=7^{3}$ \qquad
19. $71^{x}=14.5$ \qquad
20. $9^{\log _{2} 8}=x$ \qquad
(There is a back side to this)

Convert the following Logarithmic Equations to Exponential Equations.

To do this, remember the circle trick we learned. The base of the log turns into the base of the exponential. The answer to the logarithmic equation is an exponent.

Ex 1: $\log _{105} 11025=2 \ldots$ Converts to $105^{2}=11025$
Ex 2: $\log _{8} 4096=4 \ldots$ Converts to $8^{4}=4096$
21. $\log _{2} 32=5$
22. $\log _{5} 1=0$ \qquad
23. $\log _{10} 10=1$ \qquad
24. $\log _{10} 0.1=-1$ \qquad
25. $\log _{\frac{1}{2}} 2=-1$ \qquad
26. $\log _{3} 81=4$ \qquad
27. $\log _{5} 0.04=-2$ \qquad
28. $\log _{\frac{1}{2}} 8=-3$ \qquad
29. $\log _{9} 3=2$ \qquad
30. $\log _{4} 1024=5$ \qquad
31. $\log _{5}\left(\frac{1}{5}\right)=-1$ \qquad
32. $\log _{36}\left(\frac{1}{6}\right)=-\frac{1}{2}$ \qquad
33. $\log _{8} 512=3$ \qquad
34. $\log _{14} 196=2$ \qquad

