Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7.\left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

$$32.\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

37.
$$\log_8 1 =$$

38.
$$\log_{12} 12 =$$

39.
$$\log_6 36 =$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name: Hour:	
Name maine.	

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
Name:	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
Name:	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
Name:	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
Name:	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$36. \log_7 343 =$$

$$37. \log_8 1 = \underline{\hspace{1cm}}$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$37. \log_8 1 =$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$37. \log_8 1 =$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$37. \log_8 1 =$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$

Name:	Hour:
IVAIIIC	I IUUI .

Convert the following exponential equations to logarithmic equations.

Ex 1: $144 = 12^2$. This would convert to: $\log_{12} 144 = 2$. The base of the log is the base of the exponential. The answer is always an exponent.

Ex 2: $\left(\frac{1}{4}\right)^2 = \left(\frac{1}{16}\right)$. This converts to: $\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$. Everything still goes in the same place as it did in example 1. The base became the base. The exponent is the answer.

1.
$$y = 3^x$$

$$3. 12^2 = 144$$

$$4. \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$5. \left(\frac{3}{7}\right)^3 = \frac{27}{343}$$

$$6. \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

$$7. \left(\frac{5}{8}\right)^4 = \frac{625}{4096}$$

$$8. \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$9.\left(\frac{7}{12}\right)^3 = y \underline{\hspace{1cm}}$$

$$10. \left(\frac{4}{5}\right)^2 = \frac{16}{25}$$

11.
$$e^x = y$$

12.
$$e^{\frac{1}{2}} = x$$

13.
$$61^x = y$$

14.
$$22^{43} = y$$

15.
$$11^{\log_{11} 5} = x$$

16.
$$y = 9^{\log_9 x}$$

17.
$$64 = 4^x$$

18.
$$343 = 7^3$$

19.
$$71^x = 14.5$$

20.
$$9^{\log_2 8} = x$$

To do this, remember the circle trick we learned. The <u>base of the log turns into the base of the exponential</u>. The <u>answer</u> to the logarithmic equation <u>is an exponent</u>.

Ex 1:
$$\log_{105} 11025 = 2$$
 ... Converts to $105^2 = 11025$

Ex 2:
$$\log_8 4096 = 4$$
 ... Converts to $8^4 = 4096$

$$21. \log_2 32 = 5$$

22.
$$\log_5 1 = 0$$

23.
$$\log_{10} 10 = 1$$

24.
$$\log_{10} 0.1 = -1$$

$$25. \log_{\frac{1}{2}} 2 = -1$$

$$27. \log_5 0.04 = -2$$

28.
$$\log_{\frac{1}{2}} 8 = -3$$

29.
$$\log_9 3 = 2$$

30.
$$\log_4 1024 = 5$$

31.
$$\log_5\left(\frac{1}{5}\right) = -1$$

32.
$$\log_{36}\left(\frac{1}{6}\right) = -\frac{1}{2}$$

Evaluating Log Expressions.

To evaluate log expressions, you have to think about the expression as an exponential expression.

$$35. \log_5 125 =$$

$$37. \log_8 1 =$$

38.
$$\log_{12} 12 =$$

$$39. \log_6 36 = \underline{\hspace{1cm}}$$

$$40. \log_4 16 =$$

41.
$$\log_9 729 =$$

42.
$$\log_7 2401 =$$

43.
$$\log_{\frac{1}{4}} \frac{1}{4} = \underline{\hspace{1cm}}$$

46.
$$\log_e 1 =$$
