Algebra 2

Unit 1 Lesson 7: Logarithms and Exponentials

- Introduce a Logarithm
- Converting between Exponential and Logarithmic forms
- Evaluating basic logarithms

Solve these for x by testing values.

1.
$$2^x = 32$$

1.
$$2^x = 32$$
 2. $2^x = 8$

The problem we face...
$$2^x = 6$$

So we know $2^5 = 32$ and $2^3 = 8...$ But 2 raised to what power gives 6?

Try some guesses in your calculator and come

up with an estimate.

$$2^{3.5} = 5.66$$

$$2^{3.6} = 6.06$$

$$2^{3.59} = 6.07$$

$$2^{3.59} = 6.07$$

$$2^{3.59} = 5.98$$

Logarithms were defined to answer these types of problems.

Definition of Logarithm with Base b:

$$b^{x} = y \qquad \text{iff} \qquad \log_b y = x$$

Convert the previous example to a logarithm equation to solve for x.

$$2^{x} = 6$$

$$000 = X$$

Memorize This: Logarithms are used to solve for exponents!

Restrictions.

- Base must be positive.
- Can only take the log of a positive numbers.

Examples: Converting To Exponential Form

$$\log_b y = x \quad \text{iff} \quad b^x = y$$

Logarithmic Form

$$\log_2 32 = 5$$

$$\log_5 1 = 0$$

$$\log_{10} 10 = 1$$

$$\log_{\frac{1}{2}} 2 = -1$$

Exponential Form

$$2^{5} = 32$$
 $5^{-1} = 10$
 -12

Examples: Converting To Exponential Form

$$\log_b y = x \quad \text{iff} \quad b^x = y$$

Exponential Form

Logarithmic Form

$$100_{3}^{2} 256 = 8$$
 $100_{3}^{3} 5 = X$
 $100_{3}^{3} 5 = X$
 $100_{3}^{3} 510 = 2X - 1$
 $00_{3}^{3} 510 = 2X$

Evaluating logarithms by hand:

Ask yourself, "The base raised to what power gives me the number inside the log?"

Evaluate
$$\log_2 32$$
 $2^{\times} = 32$

Ask yourself: Two raised to what power is 32?

Ex: Evaluate
$$\log_4 16 =$$

Ex: Evaluate
$$log_3 1 - \bigcirc$$

"Common Log" and "Natural Log":

Common Log is when logarithmic expressions don't show a base. The base is understood to be 10. (The log button on your calculator is actually common log)

Natural Log is a logarithm with the base of *e*. It has a separate abbreviation and looks like this.

$$\log_{10} 100 = \log 100 =$$
 $\log_e 1 = \ln 1 =$

Special Logarithm Values:

$$\log_b 1 = 0$$
 since $b^0 = 1$

$$\log_b b = 1$$
 / since $b^1 = b$

Examples:

$$\log_0 10 = \log_7 1 = 0$$

$$\ln 1 = 0$$

$$\ln e = 0$$

$$\log_6 e$$

Homework:

Worksheet called "Algebra 2: Converting and Evaluating Logs"