Algebra 2 Unit 1 Lesson 5 - Factoring Quadratics using "Slide and Divide"

• Factor quadratics in the following form when a does not equal 1: $f(x) = ax^2 + bx + c$

Recap: Factor the following...

$$81 - x^2 = (9 + x)(9 - x)$$

$$x^{2} - 10x + 16 = (x - 8)(x - 2)$$
(-)8 (32

Factoring when a does not equal 1:

Slide and Divide method!

Example: Factor $6x^2 - x - 2$

Step 1: Slide the 6 over to the 2 (multiply)

Step 2: Factor using old method

$$(x-4)(x+3)$$

Step 3: Divide the numbers by the number you

slid.
$$\left(\chi - \frac{4}{6}\right) \left(\chi + \frac{3}{6}\right)$$

Step 4: Reduce

$$\left(\chi - \frac{2}{3}\right)\left(\chi + \frac{1}{2}\right)$$

Step 5: Move any denominators in front of the x they are with.

$$(3x-2)(2x+1)$$

Ex: Factor
$$4x^2 + 4x - 3$$

Slide: $x^2 + 4x - 12$

Factor: $(x+6)(x-2)$

Divide: $(x+3)(x-3)$

Simplify: $(x+3)(x-3)$

Move denominators: $(2x+3)(2x-1)$

Ex: Factor
$$10x^2 - 3x - 1$$

$$(x-5)(x+2)$$

divide: $(x-\frac{1}{2})(x+\frac{1}{5})$ Reduce: $(x-\frac{1}{2})(x+\frac{1}{5})$

· Special Case: When you can factor a number out first.

Ex:
$$3x^2 + 9x - 54$$

Ex: $3x^2 + 9x - 54$ Factor out the greatest common factor FIRST. Then factor using the easiest method.

$$3(x^2+3x-18)$$

 $3(x+6)(x-3)$

Ex: Factor
$$9x^{3} + 15x^{2} + 6x$$

Factor but $(3(F);$
 $3x(3x^{2} + 5x + 2)$

Slide ! Divide

 $x^{2} + 5x + 6$
 $(x+2)(x+3)$
 $(x+3)(x+1)$

Examples like these won't show up on your QA, but they WILL show up on your test over unit 1.

Algebra 2 Homework:

Finish worksheet from previous lesson.

QA over Lesson 5 and 6 on the next school day.