Algebra 2 - Chapter 8 Review: Exponentials and Logarithms

Name: Hour: For the following functions, state their parent functions, then state their transformations, the draw a sketch of the function. 1. $y = -2^x + 4$ Parent: $y = 2^{\times}$ Transformation: $\sqrt{4}$

$$2. y = \frac{1}{2} \left(\frac{1}{3}\right)^{x+2} + 1$$

Parent: $y = (\frac{1}{3})^k$ Transformation: V. Shr. ak by $\frac{1}{2}$, $\leftarrow 2$, 1

$$3. y = 5 * 3^{x-2}$$

Parent: $y = 3^{\frac{1}{2}}$ Transformation: $V_{5}b_{5}$ 5, $\rightarrow 2$

$$4. y = -\left(\frac{1}{4}\right)^{x+3} - 1$$

Parent: $y = (4)^x$ Transformation: $Paxa, \leftarrow 3, \downarrow 1$

Use the following formulas to answer the questions below. $A = P\left(1 \pm \frac{r}{n}\right)^{nt}$, & $A = Pe^{rt}$.

5. Stacie has \$11,340 in an investment bank that offers 3.5% growth per year. How much money will Stacie have after 6 years? $A = 11340 \left(1 + \frac{5.635}{1}\right)^{1.6} = 13939.76$ \$13,939.75

6. You drink a beverage with 120mg of caffeine. Each hour h, the amount of caffeine in your system decreases by about 12%. How many milligrams of caffeine will be left in your system after 8 hours? A= 120(1-6.12)8 = 43.16 mg

7. You get a loan of \$110,000 to buy a house. The loan has an interest rate of 1.2% compounded every 2 months. How much money will you owe after 10 years? (assuming you make no payments) $(1+\frac{0.012}{10})^{10(10)} = 124,009.79$

8. You buy a car for \$7,499.99. The cars value will depreciate at a rate of 1.9% per year. How much will 7499.99 (1-0.019)1.6 = \$6,684.59 or \$6,684.58 the car be worth after 6 years?

9. You invest \$52,600 into an account which grows at a rate of 3.5% compounded continuously. How much money will you have after 11 years?

Convert the following expressions to either Logarithms or Exponentials. Do not solve.

10.
$$\log_4 x = -2$$
 $4^{-2} = 4$

11.
$$\log_{\frac{1}{2}\frac{1}{8}} = 3$$
 $(\frac{1}{2})^3 = \frac{1}{8}$

12.
$$\ln(x+1) = 3$$
 $e^{3} = (x+1)$

13.
$$e^{6x} = 120$$
 $\ln 120 = 6 \times$

14.
$$\left(\frac{1}{2}\right)^{-x} = 8$$
 $\log_{1/2} 8 = -x$

$$16. \log_4 64 = 3$$

17.
$$\log_2 \frac{1}{8} = -3$$

18.
$$\log_3 \frac{1}{9} = -2$$

19.
$$\log_6 1 = 0$$

20.
$$16^{\log_{16} 3} = 3$$

$$21.\log_x x = 1$$

For the following logarithm functions, state the parent function & any transformations. Then sketch a graph.

22.
$$y = \log(x + 3) - 1$$

Parent: $y = \log x$ Transformation: ≤ 3 , $\sqrt{1}$

23.
$$y = -\ln x + 2$$

Parent: $y = ln \times$ Transformation: Raxa, 72

24.
$$f(x) = \log_{0.5}(x - 4)$$

Parent: $y = \log_{0.5} x$ Transformation: $\rightarrow 4$

25.
$$g(x) = -\log_{\frac{1}{2}}(x+1) - 3$$

Parent: $\gamma = \log_{1} x$ Transformation: $Raxq \leftarrow 1, \sqrt{3}$

Name: _____ Hour: ____

Expand the Expression. For #31. Remember how the $\sqrt{\ }$ sign can be written as an exponent.

$$27. \ln \frac{7x}{3} = 1 \times 7 + 10 \times - 1 \times 3$$

$$28.\log 5x^3 = \log 5 + 3\log x$$

Condense the Expression.

$$32. \log_5 8 - \log_5 12 = \sqrt{\frac{8}{12}}$$

33.
$$3 \ln x + 5 \ln y = \sqrt{3}$$

$$34. \log_3 2 + \frac{1}{2} \log_3 y = \sqrt{\log_3 2} \sqrt{\frac{1}{2}}$$

$$35.3\log_{4}(2x) + \log_{4}x - (2\log_{4}y^{2}) = \log_{4}(2x)^{3} + \log_{4}x - (\log_{4}(y^{2})^{2}) = \log_{4}\frac{8x^{3} \cdot x}{4^{4}} = \log_{4}\frac{8x^{4}}{4^{4}}$$

29. $\ln x^{\frac{1}{2}}y^3 = \frac{1}{2} \ln x + 3 \ln y$

 $30. \ln \frac{3y^4}{r^3} = 10.3 + 4104 - 310 \times$

 $31.\log_2 \sqrt{4x} = \frac{1}{2}\log_2 4 + \frac{1}{2}\log_2 X$

10g2 (4x) 1/2 or ...

Solve the following equations. Round to the nearest 2 decimal places if necessary.

$$36. \ 10^{x-3} = 100^{4x-5} \implies (0^{x-3} = (10^{2})^{4x-5} =) \ (0^{x-3} = 10^{8x-10}) \implies (0^{x-3} = 8x - 10) \implies (0^{x-3} = 10^{8x-10}) \implies (0^{x-3} =$$

37.
$$e^{-x} = 6$$
 $\log_e 6 = -x = x = -\ln 6$

$$38.8^{5x} = 4^{3x+4} \implies (2^3)^{5x} = (2^2)^{3x+4} \implies 15x = 6x+8 \implies x = \frac{8}{7}$$

$$39. -5e^{-x} + 9 = 6 = 7 -5e^{-x} = -3 = 7e^{-x} = \frac{3}{5} = 1 \log_{e} \frac{3}{5} = -x = 7 \times 10^{-3} = 10^{-3}$$

$$40. \ 10^{-12x} + 6 = 100 \implies 10^{72x} = 94 \implies \log_{10} 94 = -12x \implies x = -\frac{\log 94}{12}$$

$$41.\log_2 x = -1 = 7$$

42.
$$4 \log_3 x = 28$$
 => $\log_3 x = 7$ => $3^7 = x$

43.
$$2\ln(-x) + 7 = 14 \implies 2\ln(-x) = 7 \implies \ln(-x) = 7/2 \implies e^{7/2} = -x \implies x = -e^{7/2}$$

44. $\ln x + \ln(x+3) = 1$ This one will need to be solved like a quadratic eventually.

$$45.15 + 2\log_2 x = 31 = 7 2\log_2 x = 16 = 7 \log_2 x = 8 = 7 28 = x$$

94.
$$l_{\kappa}[\kappa(x+3)] = 1$$

 $l_{\kappa}(x^2+3\kappa) = 1$
 $e' = \chi^2 + 3\kappa$
 $\chi^2 + 3\kappa - \rho = 0$

$$x = \frac{-3 \pm \sqrt{9 - 4(1)(-e)}}{2} = \frac{-3 \pm \sqrt{9 + 4e}}{2}$$
 so $x \approx 0.729 \notin -3.729$